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ga,;; Association rules

= Objective

= extraction of frequent correlations or pattern from a
transactional database

Tickets at a supermarket
counter = Association rule

diapers = beer

1 | Bread, Coke, Mk = 2% of transactions contains
2 Beer, Bread both items
3 | Beer, Coke, Diapers, Mik = 30% of transactions
4 | Beer, Bread, Diapers, Milk containing diapers also
5 | Coke, Diapers, Milk contains beer
DSG

Definitions

= [Jtemsetis a set including one or more
items
= Example: {Beer, Diapers}

= k-itemsetis an itemset that contains k e Ceimy Gl

items Beer, Bread

= Support count (#) is the frequency of Beer, Coke, Diapers, Milk

occurrence of an itemset
= Example: #{Beer,Diapers} =2

Beer, Bread, Diapers, Milk

ol sl w[n| =

Coke, Diapers, Milk

= Supportis the fraction of transactions
that contain an itemset
= Example: sup({Beer, Diapers}) = 2/5
= Frequent itemsetis an itemset whose
support is greater than or equal to a
minsup threshold

pSG

g‘; Rule quality metrics

= Given the association rule
A=B
= A, B are itemsets
= Supportis the fraction of transactions containing
both A and B
#{A,B}
Tl
= |T| is the cardinality of the transactional database
= a priori probability of itemset AB
= rule frequency in the database
= Confidenceis the frequency of B in transactions
containing A
sup(A,B’
sup(A)
= conditional probability of finding B having found A
= “strength” of the "="

pSG

;& Association rule mining

= A collection of transactions is given
= a transaction is a set of items
= items in a transaction are not ordered
= Association rule
A B=C
= A, B = items in the rule body
= C = item in the rule head
= The = means co-occurrence
= not causality
= Examples
= cereals, cookies = milk
= age < 40, life-insurance = yes = children = yes
= customer, relationship = data, mining

pBG

Py . —
;.;z; Rule quality metrics: example

= From itemset {Milk, Diapers} the
following rules may be derived

Bread, Coke, Milk

= Rule: Milk = Diapers

Beer, Bread
= support

sup=#{Milk,Diapers}/#trans. =3/5=60% Beer, Coke, Diapers, Milk

= confidence

Beer, Bread, Diapers, Milk
conf=#{Milk,Diapers}/#{Milk}=3/4=75%

al alw[n| e~

= Rule: Diapers = Milk (e, By

= same support
$=60%
= confidence
conf=#{Milk,Diapers}/#{Diapers}=3/3
o

=100%
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.47 Association rule extraction _}; Frequent Itemset Generation

Given d items, there
are 29 possible

= Given a set of transactions T, association rule
candidate itemsets

mining is the extraction of the rules satisfying the
constraints
= support > minsup threshold
= confidence > minconfthreshold
= The result is
= complete (a//rules satisfying both constraints)
= correct (only the rules satisfying both constraints)
= May add other more complex constraints

From: Tan,Steinbach, Kumar, Introduction
to Data Mining, McGraw Hill 2006

10
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DEG 7 DEG
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‘L Association rule extraction %‘Sf Frequent Itemset Generation
= Brute-force approach _
= enumerate all possible permutations (i.e., association rules) = Brute fOI’CG approaCh
»  compute support and confidence for each rule = each itemset in the lattice is a candidate
= prune the rules that do not satisfy the minsup and minconf .
constraints ‘ frequent itemset
= Computationally unfeasible | _ = scan the database to count the support of each
= Given an itemset, the extraction process may be split didat
= first generate frequent itemsets candidate
= next generate rules from each frequent itemset = match each transaction against every candidate
= Example . B d
. Ttemset CompIeX|ty o(|T| 2 vy)
{Milk, Diapers} sup=60% « |T| is number of transactions
= Rules = d is number of items
Milk = Diapers (conf=75%) : .
Diapers = Milk (conf=100%) » W is transaction length
D‘\B/\G 8 D‘\BAG 11
g sk - n B »"d“* o B .
=%t Association rule extraction ‘e;‘;%s Improving Efficiency

= Reduce the number of candidates
= Prune the search space

: o
« level-wise approaches (Aprioti, ...) » complete set of candidates is 2! )
= approaches without candidate generation (FP-growth, ...) = Reduce the number of transactions

» other approaches = Prune transactions as the size of itemsets increases

= most computationally expensive step = reduce |T| _
« limit extraction time by means of support threshold = Reduce the number of comparisons

(2) Extraction of association rules = Equal to _ITI 24 _
« generation of all possible binary partitioning of each = Use efficient data structures to store the candidates

- or transactions
frequent itemset
= possibly enforcing a confidence threshold

(1) Extraction of frequent itemsets
= many different techniques

Elena Baralis, Silvia Chiusano
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.4 The Apriori Principle ‘> Apriori Algorithm [Agro4]
"If an itemset is frequent, then all of its
subsets must also be frequent” = Pseudo-code .
. G Candidate itemset of size k
= The support of an itemset can never exceed L - frequent itemset of size k
the support of any of its subsets L, = {frequent items};
) for (k= 1; L, 1=0; k++) do
= It holds due to the antimonotone property begin
f th rt G, = candidates generated from Z;
of the support measure for e}ach transaction ¢in databas:e do )
= Given two arbitrary itemsets A and B increment the count of all candidates n G
if A < B then sup(A) = sup(B) Ly,; = candidates in G, satisfying minsup
. end
= It reduces the number of candidates return U L;
pSG s pSG .
£ A - - - ,"{?;’ o E
= The Apriori Principle ¥ Generating Candidates
From: Tan Steinbach, Kumr, niroduction = Sort L, candidates in lexicographical order
to Data Mining, McGraw Hill 2006
= For each candidate of length k
= Self-join with each candidate sharing same L,; prefix
= Prune candidates by applying Apriori principle
/ = Example: given L;={abc, abad, acd, ace, bcd)y
Foundtobe  / + Selfjoin
Infrequent ‘\ = abcd from abcand abd
= acde from acdand ace
= Prune by applying Apriori principle
= acdeis removed because adeis notin L
. C~{abcdy
pe T - 1 pSG v
e a S
A S o SR T - .
=zt Apriori Algorithm [Agro4] ige Apriori Algorithm: Example
= Level-based approach Example DB
= at each iteration extracts itemsets of a given length k TID ltems
= Two main steps for each level ; éAéB%
= (1) C_andidate generation 3 {i’éb’é}
= Join Step 4 {AD,E}
gfe?eenrgtﬁ ﬁandidates of length k+1 by joining frequent itemsets 5 {A:B:C}
= Prune Step 6 | {AB,CD}
apply Apriori principle: prune length k+1 candidate itemsets 7 {B,.C}
that contain at least one k-itemset that is not frequent 8 {A,B,C}
= (2) Frequent itemset generation 9 {A,B,D}
= scan DB to count support for k+1 candidates 10 {B.C.E}
=« prune candidates below minsup minsup>1
DfiG s pBG .

Elena Baralis, Silvia Chiusano
Politecnico di Torino 3



Database Management Systems Association Rules
Fundamentals

SER . .
: %@; Count support for candidates in C,
‘ Example DB '
TID| Items %) G
1 {AB} G itemsets itemsets [ sup
2 {B,C,D} « itemsets|sup _ Ly {AB} | o {AB} | 5
3 | {ACD,E} 1st DB A 17 itemsets|sup {A.C} DB {AC} | 4
a | apE | 9" | @ |8 wT {AD} | gcan | {AD) | 4
5 | {ABC) © |7 B |8 {AE) {AE) | 2
6 | {AB.CD} o) |5 © | 7 \mm)| BC ﬁ {BC} | 6
7| Bo & |3 o |5 (8.0} 8D} | 3
8 | {ABC) B |3 B.E} ®BE | 1
9 {A’B’D} {C,D} {ch} | 3
10 | (BCE) {CE} {CE | 2
C, {D,E} {DE | 2
minsup>1
DfiG 9 pSG ”
ErE ] . . SN : g ;
‘> Prune infrequent candidates in C, a‘;; Prune infrequent candidates in C,
‘ Example DB
TID Items c . G » n C;z L,
1 {A,B} 1 itemsets itemsets | sup it t
2 {B,C,D} « itemsets|sup _ L {A,B} ond {AB} | 5 Iiz;e)s susp
3 | {ACD.E} 1t DB a7 itemsets|sup {AC} | Dg | {AC) | 4 (A | 4
4| apEy | 9" | (B |8 _ a7 {AD} | gean | {AD} | 4 (AD} | 4
5 {AB.C} ©r |7 ﬂ L,=C, {B} |8 {AE} {AE} | 2 AE | 2
6 | {ABCD} o |5 € |7 |mm)| BC | mm) | BC | 6 M) 5o | 6
7| B9 E |3 D} |5 {B.D} (8D} | 3 8D} | 3
8 {AB,C} {E} |3 gg}} _%_ {cby| 3
9 | {ABD} | = All itemsets in set C; are frequent (CE} CE} | 2 {CE} | 2
10 | {BCE according to minsup>1 (D.E} DE | 2 {DE} | 2
minsup>1
DfiG 0 pSG g
.é’,p.e‘éﬁ,.,\_: R ‘gxﬂ‘x % 3 .
;:.’; Generate candidates from L, a;;;:’;; Generate candidates from L,
- . Lz C
3
G itemsets| sup itemsets
itemsets {AB} | 5 {AB.C}
L {AB} {AC) | 4 {A,B,D}
itemsets[sup {AC) {AD} | 4 {AB,E}
A |7 {AD} {AE} | 2 {A.C.D}
B |8 (AE} {BC} | 6 ‘ {AC,E}
© |7 m)| B B0} | 3 {AD.E}
o} |5 {B.D} {Chy | 3 {B,C.D}
{Ey |3 {BE} {CE} | 2 {C.D,E}
{C,D} {DE}y | 2
{C,E}
{D.E}
Dfje n DEG 5
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SER .. . . SER, -
=~ Apply Apriori principle on C; s%;g Generate candidates from L;
* . :
itemsets| sup s
{AB} | 5 AB.C) Ly
{A,C} 4 {A,B,D} itemsets| sup
EA,Di 4 {AB,C}| 3 (o
AE} | 2 .
, {A,C,D} {ABD}| 2 itemsets
(8C) | 6 ‘ (ACE) {ACD}| 2 ﬁ AB.CD]
BD} | 3 {AD.E} {ADE}| 2
{C,D} 3 {B.C,D} {B,C,D}| 2
{CE} | 2 {C.D,E}
{DE} | 2
= Prune {A,B,E}
= Its subset {B,E} is infrequent ({B,E} is not in L))
pBic e DEG »
& Count t for candidates in C <3 Apply Apriori principle on C.
i‘* ount support ror candidates In C; aasfﬁ pply Apriori prinCipie on C,
- LZ C3 .
itemsets| sup temsets G
{AB}y | 5 ABCH =0 itemsets| sup L;
{AC} | 4 (A:B:D} ?ISB {ABC} 3 itemsets| sup
{AD} | 4 scan gﬁ»gvg}} i {ABC} 3 C,
{AE} | 2 {A,C,D} it {ABD}| 2 itemsets
{BC} | 6 ﬁ (AC.E} ﬁ ACE} 1 {ACD}| 2 ‘ {AB.,C,D}
8D} | 3 (AD.E} {ADE}| 2 {ADE} 2
o | 3 {B.C.D} {B.C,D}| 2 {B.CD}| 2
{C,E} 2 {C,D,E} {CD,E}| 1
{DE | 2 = Check if {A,C,D} and {B,C,D} belong to L,
= L;contains all 3-itemset subsets of {A,B,C,D}
= {A,B,C,D} is potentially frequent
pBG : pSG 2
ok . . . .__?;\!‘j‘i-,l___‘ . .
;:.’; Prune infrequent candidates in C; a;;;:_’;g Count support for candidates in C,
=, C3 Z
itemsets| sup itemsets G
{AB} | 5 (ABC}| = itemsets| sup Ly L,
(AC) | 4 (ABD) % N {ABC}| 3 itemsets| sup itemsets| sup 4t DB
{AD} | 4 can | ABD}H 2 {ABC} 3 {ABC} 3 G, can G i
{AE} | 2 ‘ (A.C.D} - {ACD}| 2 EQ,(B:,B}} g {ABD}| 2 ‘ TETEEG itemsets [sup
(BC) | 6 ACE .C, {ACD}| 2
8D} | 3 ({A’D’E]i {ADE} 2 {ADE}| 2 (ADE}| 2 {A.B.C.D} ABCDH 1
{cDy | 3 (B.C.D} {B,C,D}| 2 (BCD} 2
{CE} | 2 {C,D,E}
{DE} | 2
= {A,C,E} and {C,D,E} are actually infrequent
= They are discarded from C;
pBc 7 pBG o

Elena Baralis, Silvia Chiusano
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.4 Prune infrequent candidates in C,

Ly
itemsets| si
{A,B,C}
{A,B,D}
{A,C,D}
{A,D,E}
{B,C,D}

th
G 4t DB I

scan — 4 .
q itemsets - s
{A,B,C,D} ‘ Ly=0

= {A,B,C,D} is actually infrequent
= {A,B,C,D} is discarded from C,

c
NINNN WE

pSG B

o) . o o
_;; Performance Issues in Apriori

= Candidate generation

= Candidate sets may be huge
= 2-itemset candidate generation is the most critical
step
» extracting long frequent intemsets requires
generating all frequent subsets
= Multiple database scans

= n+1 scans when longest frequent pattern length
isn

é;; Final set of frequent itemsets
‘ Example DB Ly L
itemsets|sup itemsets| sup
TID Items A} 7 {A.B} 5
1 {A.B} B |8 {AC} | 4
2 {B.C.D} © |7 {AD} | 4
3 | {ACD,E} o |5 {AE} 2
4 | {ADE} ® |3 (BC) | 6
5 | {AB.C} ‘ L BD} | 3
¢ HABCD) itemsets| su {0y | 3
7 {B,C} B C 3" {CE} | 2
8 | {ABC) {A'B*D} > LoB | 2
9 {AB,D} EA,C’D} 2
10 | {B,C.E} (A’D'Ei 5
minsup>1 (B:CzD} 2
bBc .

Factors Affecting Performance

= Minimum support threshold
= lower support threshold increases number of frequent itemsets
= larger number of candidates
= larger (max) length of frequent itemsets
= Dimensionality (number of items) of the data set
= more space is needed to store support count of each item
= if number of frequent items also increases, both computation and
I/0 costs may also increase
= Size of database
= since Apriori makes multiple passes, run time of algorithm may
increase with number of transactions
= Average transaction width
= transaction width increases in dense data sets

= may increase max length of frequent itemsets and traversals of
hash tree
= number of subsets in a transaction increases with its width

pSG .

! i; Counting Support of Candidates
= Scan transaction database to count support of
each itemset
= total number of candidates may be large

= One transaction may contain many candidates
= Approach [Agro4]

= candidate itemsets are stored in a hash-tree
» Jeafnode of hash-tree contains a list of itemsets and counts
« /interior node contains a hash table

= subset function finds all candidates contained in a

transaction

» match transaction subsets to candidates in hash tree

pBG B

f;% Improving Apriori Efficiency

= Hash-based itemset counting [Yu95]

= A kitemset whose corresponding hashing bucket count is
below the threshold cannot be frequent

= Transaction reduction [Yu95]
= A transaction that does not contain any frequent k-itemset is
useless in subsequent scans
= Partitioning [Sav96]

= Any itemset that is potentially frequent in DB must be frequent
in at least one of the partitions of DB

Elena Baralis, Silvia Chiusano
Politecnico di Torino
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o 0 0 . . AE 3 n
Improving Apriori Efficiency i FP-tree construction
. ) Example DB
= Sampling [Toi96] D P s " _(1) Count item support and prune
= mining on a subset of given data, lower support threshold + a 1 (AB} items |_39|0W minsup thre5h0|d_
method to determine the completeness 2 {B,é,D} - I(tze)n‘lBSullll'ld dgi?gaes:r}rgbslsp?;ﬁto;'ggr
= Dynamic Itemset Counting [Motw98] i {?ACI’DDI’EI)E} = (3) Create FP-tree
« add new candidate itemsets only when all of their subsets are 5 {A:B,’C) For each transgactiqn l'in DB
esimated t b freguer 6 | MBCD) | gutertmneaon thene
7 {B.C} = same order as Header Table
8 {AB,C} = insert transaction ¢in FP-tree
9 {A,B,D} « use existing path for common prefix
10 {B,C,E} = create new branch when path
becomes different
minsup>1
pSG 5 pSG 0
¢ FP-growth Algorithm [Han00] ,qy FP-tree construction
= Exploits a main memory compressed Transaction Sorted transaction
rappresentation of the database, the FP-tree } T:D“ ”‘:"és }‘I T:D‘l '{‘g"/g “
= high compression for dense data distributions {ABY ’
« less so for sparse data distributions Header Table FP-tree
= complete representation for frequent pattern mining m
= enforces support constraint {eBT s;p
= Frequent pattern mining by means of FP-growth a7
= recursive visit of FP-tree <y 7
= applies divide-and-conquer approach {D}| 5
» decomposes mining task into smaller subtasks {E}| 3
= Only two database scans
= count item supports + build FP-tree
DSG s pSG a
: . ST .
¢¢ FP-tree construction ;:i; FP-tree construction
Example DB Transaction Sorted transaction
T 0 = (1) Count item support and prune \ TID\ ltems [TD] Httems |
SIS items below minsup threshold 2 ‘~| {BCD} |
1 {A,B} : i | {B,C,D} 2 | {BCD}
B ® C D) = (2) Build Header Table by sorting
3 | AcDE items in decreasing support order Header Table
4 {A.D,E} Header Table Item|[ sup
5 {A,B,C} Iltem | sup B s
6 | {AB,C,D} By 8 A 7
7| B0 w7 7
8 {A,B,C} © 7 {D}| 5
9 {A,B,D} o} 5 {E}| 3
10 | {B,C,E} {E}| 3
minsup>1
Dfje » DEG 2

Elena Baralis, Silvia Chiusano
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ﬂ .;_.L FP-tree construction

"Tr'ansactlon Sorted transactlon
\ TID[ ltems q\ TID| Items
3 [{ACDE} "7 3 \{ACDE}\

Header Table
Item sup
{BY| 8
Ay 7
| 7
5
3

{D}
{E}

43

;}-‘; FP-tree construction

Transaction Sorted transact|on
\ TID[ ltems ql TID| ltems
6 |{ABCD} 7| 6 \{BACD}\

Header Table
Item| sup
{B}| 8
Ay 7
C 7
{D}| 5
{E}| 3

%}q}; FP-tree construction

Transaction Sorted transact|on
\TlDI Items [TID] Items
| {ADE} \ﬁ\ 4| {ADE}

Header Table
ltem | sup
{B}| 8
A 7
{Ct| 7
{D}| 5
{E}| 3

gg FP-tree construction

Tl:ansaction Sorted transaction
[TD] items | [ TID[ Items |
T eo ™7 6o

Header Table
Item| sup
{B}| 8
A 7
{C| 7

5

3

D}
{E}

i FP-tree construction
Tfénsactlon Sorted transactlon

\TlDI ltems [TID] Items
| {AB,C} ]‘[ 5 \{BAC}

Header Table
Iltem | sup
(B} 8
{Ab] 7
{Ct| 7
{D}| 5
{E}| 3

(¢ FP-tree construction

TFansactlon Sorted transactlon
\TlD\ ltems [TID[ ltems
| {ABCY \~| 8 | {BAC}

Header Table
Item| sup
{B}| 8
A 7
Cy 7

5

3

{D}
{E}

Elena Baralis, Silvia Chiusano
Politecnico di Torino
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.; FP-tree construction 2 FP-growth Algorithm
Transaction Sorted transad'on = Scan Header Table from lowest support item up
\ TID| Items q\ TID| Items ) o
[ ¢aBDY "7V 9 | {BAD} = For each item i in Header Table extract frequent
itemsets including item i and items preceding it in
Header Table Header Table
Item | sup = (1) build Conditional Pattern Base for item i (i-CPB)
Eii ? = Select prefix-paths of item i from FP-tree
< 7 = (2) recursive invocation of FP-growth on i-CPB
{D}| 5
{E}| 3
pSG pSG 2
e . S5,
i FP-tree construction &;% Example
Transaction Sorted transact|on = Consider item D and extract frequent itemsets including
\ TID | Items ql TID \ Items = D and supported combinations of items A, B, C
| 10] {BCE} |7 7| 10\{BCE}
Header Table
Header Table ltem | sup
ltem | sup By 8 F--—-—-- ‘
B}| 8 A 74
A 7 {C}| 7 r-
cy 7 A
{}| 5 €] 3 1w
{E}| 3 )
DBG Dfje
.;v"\}'\x'f"ﬂ-_ a -"?gki.!'-'-‘ o
i Final FP-tree is° Conditional Pattern Base of D
= (1) Build D-CPB
Header Table = Select prefix-paths of item D from FP-tree
Iltem | sup . .
BY| 8 f------ ‘ - Header Table
Ay 7 L. 7 Item | sup
C 7 By 8 f-----" ’
Dy 5 | A 7
{E}] 3 | {C}| 7 -
‘- o
Frequent
itemset:
e el D, sup(D) =5
pgG frequent temaet generation. DEG

Elena Baralis, Silvia Chiusano
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it i+ Conditional Pattern Base of D
Header Table Header Table FP-tree
Iltem| sup E Item| sup
B[ 8 oo ’ o : B[ 8 (oo ’
A 7 1 A 7L
C 7 b hc IS
GIEEY LE] 3 [N
D-CPB__\ D-CPB_ \ \
| Items [sup | Items [sup |}
BACH[ 1 |1\
N P {BA |1 |*
{8, | 1
pSG 5 pSG s
S e SER .
%:--a-g,;CondltlonaI Pattern Base of D :.Z: Conditional Pattern Base of D
Header Table Header Table
ltem| sup . ltem| sup
(B 8 [ ’ (B} 8 |- ’
A 7 4 A 74
C 7 bl 1IN
DCPB__} \ D-CPB__ |
[Teems [sup ] | Trems [s0p |
: {BACY | 1 |1
BAY |1 |°
BC | 1
A |1
DSG s DHG e
T o B, o
ig Conditional Pattern Base of D i Conditional Pattern Base of D
Header Table FP-tree = (1) Build D-CPB
Item| sup ) . = Select prefix-paths of item D from FP-tree
By 8 -7 , D-CPB o D-conditional
Ay 7 T D-conditional FP-tree
a7 P Header Table
{BACH| 1 Ttem [ sup ,
. {BA} |1 w4 -
[{E] 3 Lo
(D-}CPB \ {BCr |1 ‘ @] 3 F--
Ttems [sup |t {AC |1 ©] 3 |
BAC| 1 |} w1 -
{BA} | 1
= (2) Recursive invocation of FP-growth on D-CPB
DfiG 7 pgG 50

Elena Baralis, Silvia Chiusano
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,ﬁ. Conditional Pattern Base of DC

= (1) Build DC-CPB
= Select prefix-paths of item C from D-conditional FP-tree

D-CPB D-conditional D_c;":_ il:zgnal
Items |sup Header Table
{BAC}| 1 Item | sup [Py [ P
{BA} 1 {Ay] 4 ‘
(B |1 ‘ 8} 3
®o |1 e
@ |1 ’ DC-CPB
l Items |sup
{AB} | 1
Frequent itemset: {A} 1
DC, sup(DC) = 3 (B} 1
pSG N

%‘:Condmonal Pattern Base of DCB

= (1) Build DCB-CPB
= Select prefix-paths of item B from DC-conditional FP-tree

DCB-CPB

e = Item A is infrequent in DCB-CPB
7y 1 ‘ q = Ais removed from DCB-CBP
= DCB-CDB is empty

!

= (2) The search backtracks to DC-CBP
pSG o

g_#, Conditional Pattern Base of DC

= (1) Build DC-CPB
= Select prefix-paths of item C from D-conditional FP-tree

DC-CPB DC-conditional DC-conditional
Items |sup Header Table FP-tree
{AB} |1 Ttem | sup -

{Ar |1 @Ay 2 -
B |1 q By 2 ---.

= (2) Recursive invocation of FP-growth on DC-CPB

DSG @

ig? :Conditional Pattern Base of DCA

= (1) Build DCA-CPB
= Select prefix-paths of item A from DC-conditional FP-tree

DC-CPB DC-conditional DC-conditional
Items |sup Header Table FP-tree
{AB} | 1 Item | sup —

{Ay |1 -
{8 |1 q By 2 |---.

Yl
. DCA-CPB is empty
Frequent itemset:
DCA, sup(DCA) = 2
= (2) The search backtracks to D-CBP J
pSG -

EﬂI,a;CondmonaI Pattern Base of DCB

= (1) Build DCB-CPB
= Select prefix-paths of item B from DC-conditional FP-tree

DC-CPB DC-conditional DC-conditional
Items |sup Header Table FP-tree
{AB} |1 Item | sup I

W gy W2

{B} 1 -

-

/

7
' ’ DCB-CPB
Ttems [sup |

Frequent itemset: {A} 1 ‘
DCB, sup(DCB) = 2

Elena Baralis, Silvia Chiusano
Politecnico di Torino

% Conditional Pattern Base of DB

= (1) Build DB-CPB
= Select prefix-paths of item B from D-conditional FP-tree
D-CPB D-conditional

D-conditional FP-tree
Items |sup Header Table
{BACy| 1
{BA} |1
B |1
A |1
{A} 1
DB-CPB
[ Ttems [sup
Frequent itemset: | Ay 2
DB, sup(DB) = 3
pBG %
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*q_-;i Conditional Pattern Base of DB .: Frequent itemsets with prefix D
= (1) Build DB-CPB = Frequent itemsets including D and supported
= Select prefix-paths of item B from D-conditional FP-tree combinations of items B,A,C
Example DB
DB-conditional
DB-CPB Header Table TID Iltems
Items |sup Ttems |sup DB-conditional 1 {AB} itemsets| sup
*r |2 ‘ ™ 12 1- FP-tree 2 | BCD Oy | 5
3 | {ACD,E} {AD} | 4
4 {A,D,E} {BD} | 3
5 | {ABC} ‘ {cby| 3
6 | {AB,C,D} {ABD}| 2
7 {B,C} {A,C,D}| 2
= (2) Recursive invocation of FP-growth on DB-CPB 8 | {AB.C} {B.CD} 2
9 | {ABD} ;
D‘\B,\G . D‘\B/\G 10| BCE minsup>1 N
%%,;Conditional Pattern Base of DBA i Other approaches
= (1) Build DBA-CPB = Many other approaches to frequent itemset extraction

= Select prefix-paths of item A from DB-conditional FP-tree . some covered later

= May exploit a different database representation
DB-conditional = represent the tidset of each item [Zak00]

DB-CPB Header Table Horizontal
Items |sup Ttems DB-conditional Data Layout Vertical Data Layout
{Ay | 2 FP-tree TID | Items E
1 |ABE
DBA-CPB is empty
Frequent itemset: (no transactions)

DBA, sup(DBA) = 2
= (2) The search backtracks to D-CBP J
pBG @ pSG g

1
3
6

o~NaN=(m
R NFAEN] (o)
© o s N|O

5]

>

[e]

o
©ONO OS>

CONOOBWN
>
m

From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006

5
®

“i‘ '!
T s
g Conditional Pattern Base of DA ! i{; Compact Representations
= (1) Build DA-CPB N = Some itemsets are redundant because they have
= Select prefix-paths of item A from D-conditional FP-tree identical support as their supersets
D-CPB " D-conditional TID [ AL] A2 AS] A4] AS] AG A7] AB] ASTALY] aﬂ:|eﬂz -
Tt D-conditional FP-tree ::1;1;11111100000000000000000000
ems |sup Header Table [3]1 121 1 11111 10000000UO0O0O0O0O0D0O00000 0 0
[4]2 1 11 11111100 0O0O0O0O0O0OO0TO0OO0UO0OO0O0OO0O0O0O0O0 O
BACYH| 1 |  [Ttemlsw | . —|A4| __--- [6]1 11 1 1111 1100000000000000000 000
BA |1 o 0 00000000111 1iiiiii000000000o0
BC |1 o 0000000001 11 ii11iii000000000o0
4 {0]Jo o 0o 0000090011 111111110 000O0O0O0O0TO0O0
AcG 11 F]o 0 0 0 000 0000000000000 1 11111111l
{A} 1 [13]0 0 0 OO OO0OOOOOO®OO®OO®O©OOOOO D111 11 1 1 1 1 1 1
:DA_CPBisempw CiHERE SRR EERE NSRS S NN R R
(no transactions) = Number of frequent itemsets = 3x z[ K J
Frequent itemset: 1
DA, sup(DA) = 4 The search ends = A compact representation is needed
D‘\B,\G 69 D‘\BAG [ From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 | 72
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Database Management Systems

An itemset is frequent maximal if none of its immediate supersets
is frequent

Maximal
Itemsets

Association Rules

Closed but
not maximal

Minimum support =2

Closed and
maximal

#Closed =9

#Maximal = 4
Infrequent
Itemsets ~ < Border
pDBG - n pBG 7
M [ From Tan Steinbach, Kumar,inroduction to Data Mining, MoGraw Hil 2006 | ‘\/\ [ From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
7, B Mo
i Closed Itemset iy Maximal vs Closed Itemsets
= An itemset is closed if none of its immediate
supersets has the same support as the itemset Frequent
itemset [ sup ltemsets
TID Items {g) g itemset sup Closed
1 {AB} {B} {A.B,C} 2 Frequent
2 {B,C,D} {C} 3 {A,B,D} 3 Itemsets
H {/(\Asécb?} oy | 4 achy | 2
,B, {B,C,D} 3 i
5 | {ABCD} &3 ‘21 (ABCD)| 2 ;"r:;"l:[':"
( A,D} 3 Itemsets
{BC} | 3
{BD} | 4
C,D 3
B { } B From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006
D‘\/\G From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 74 D‘\I\G 77
S, A
it Maximal vs Closed Itemsets g Effect of Support Threshold
T||.3. I ‘Transactmn Ids B R . R
, fé“cs Ty = Selection of the appropriate minsup
2 | asco threshold is not obvious
3 | BCE = If minsuypis too high
4 | ACDE « itemsets including rare but interesting items may
5 | DE be lost
example: pieces of jewellery (or other expensive
products)
= If minsuypis too low
= it may become computationally very expensive
» the number of frequent itemsets becomes very
Not supported by -~ large
B any transactions =TT TTTTTTI T e ey B
DN\G From: Tan,Steinbach, Kumar, Introduction to Data Mining, McGraw Hill 2006 ‘ 7 DMG 78

Fundamentals
* Maximal Frequent Itemset n:;; Maximal vs Closed Frequent Itemsets
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Database Management Systems Association Rules

Fundamentals
+ Interestingness Measures g Example
= A large number of pattern may be extracted A iati |
= rank patterns by their interestingness = ASsociation rule
= Objective measures play basket = eat cereals
= rank patterns based on statistics computed from data has corr = 0.89
= initial framework [Agr94] only considered support and = negative correlation
confidence = but rule
'-othe'ar statistical measures available play basket => not (eat cereals)
= Subjective measures has corr = 1.34
= rank patterns according to user interpretation [Silb98] !
= interesting if it contradicts the expectation of a user
= interesting if it is actionable
pSG » pSG @
# | Measure Formula
i . i clent p—e:) e m—
- Confidence measure: always reliable? | ey | S st et
3 | Odds ratio (@) o T
4 | Yule's Q
= 5000 high school students are given 5 | vaes ¥
= 3750 eat cereals 6 | Kappa (x) iE e o)
= 3000 play basket 7 | Mt ) | e R
= 2000 eat cereals and play basket 8 | JMessure (J) e (P(A, B) og( S22 + P(AB) log(Z02).
= Rule P(A, B)log(5§8) + P(AB) log( S5 )
play basket = eat cereals i m(”fﬁg(:‘f L(%)” BT+ OO + PO
o _ sup = 40%, conf = 66,7% . . P(ﬂf;ﬂlﬁ)“}:ﬁ()ﬁ\s)“]+P<§>[P<A\§>“+»<m§>“1
is misleading because eat cereals has sup 75% (>66,7%) 10 | support (,,() :::(B(, e
11 | Confidence {(¢) (P{B|A), P(A|B
12 | Laplace (L) max %ﬂ%%ﬂ—"%‘
" moﬁ Iﬁrgqﬁzl:\i(;do?y basket |not basket |total 13 | Convietion (V) max ﬂ,ﬁ%@%{%@) )
rule head cereals 2000 1750| 3750 | Ig)) e
= negative not cereals| 1000 250| 1250 16 | Piatesky Shagieo's (PS) Pv(l;j;‘ﬁP(A)P(B)
correlation total 3000 2000| 5000 17 | Certainty factor () max (PEAHE PAL W)
18 | Added Value (AV) max(P(B|A) — P(B), P(A|B) - P(4))
DBG & DBG o | Gt )| el F R < RS
M M 21| Kiosgen (K) P B} max{P{BIA) - P(B),PLAIB) - P(A)

g Correlation or lift

rA=B
P(A B) conf(r)

Correlation = =

P(A)P(B) sup(B)

= Statistical independence
= Correlation = 1

= Positive correlation
= Correlation > 1

= Negative correlation
= Correlation < 1

pBG B
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